Building a compact online MRF recognizer for large character set by structured dictionary representation and vector quantization technique
نویسندگان
چکیده
This paper describes a method for building a compact online Markov random field (MRF) recognizer for large handwritten Japanese character set using structured dictionary representation and vector quantization (VQ) technique. The method splits character patterns into radicals, whose models by MRF are shared by different character classes such that a character model is constructed from the constituent radical models. Many distinct radicals are shared by many character classes with the result that the storage space of model dictionary can be saved. Moreover, in order to further compress the parameters, VQ technique to cluster parameter sequences of the mean vectors and covariance matrixes for MRF unary features and binary features as well as the transition probabilities of each state into groups was employed. By sharing a common parameter sequence for each group, the dictionary of the MRF recognizer can be greatly compressed without recognition accuracy loss. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Development of a Robust and Compact On-Line Handwritten Japanese Text Recognizer for Hand-Held Devices
The paper describes how a robust and compact on-line handwritten Japanese text recognizer was developed by compressing each component of an integrated text recognition system including a SVM classifier to evaluate segmentation points, an on-line and off-line combined character recognizer, a linguistic context processor, and a geometric context evaluation module to deploy it on hand-held devices...
متن کاملRecent Results of Online Japanese Handwriting Recognition and Its Applications
This paper discusses online handwriting recognition of Japanese characters, a mixture of ideographic characters (Kanji) of Chinese origin, and the phonetic characters made from them. Most Kanji character patterns are composed of multiple subpatterns, called radicals, which are shared among many (sometimes hundreds of) Kanji character patterns. This is common in Oriental languages of Chinese ori...
متن کاملDiscriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery
Discriminative and Compact Dictionary Design for Hyperspectral Image Classification using Learning VQ Framework Report Title Sparse representation provides an efficient description for high-dimensional Hyperspectral Imagery (HSI) and also encodes discriminative information useful for classification. However, due to the large size of typical HSI images, the naive way to construct a dictionary wi...
متن کاملCursive character recognition by learning vector quantization
This paper presents a cursive character recognizer embedded in an o-line cursive script recognition system. The recognizer is composed of two modules: the ®rst one is a feature extractor, the second one a learning vector quantizer. The selected feature set was compared to Zernike polynomials using the same classi®er. Experiments are reported on a database of about 49,000 isolated characters.
متن کاملA learning algorithm for structured character pattern representation used in online recognition of handwritten Japanese characters
structural informations SCPR dictionary character patterns Figure 1. SCPR dictionary. Abstract This paper describes a prototype learning algorithm for structured character pattern representation with common subpatterns shared among multiple character templates for on-line recognition of handwritten Japanese characters. Although prototype learning algorithms have been proved useful for an unstru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014